Improving Efficiency in Smart Grid Applications With Fully Integrated Current Sensing ICs

Improving Efficiency in Smart Grid Applications With Fully Integrated Current Sensing ICs

下载PDF版本

由Shaun Milano Al亚博棋牌游戏legro Microsystems,LLC,以及
Andreas P. Friedrich Allegro MicroSystems Europe

专注于光伏系统

With increasing concerns about the global demand for energy and environmental awareness, power electronics applications are under pressure to improve efficiency. The advent of the Smart Grid, Plug-in Hybrid Electric Vehicles (PHEV) and full Battery Electric Vehicles (BEV), as well as grid-tied photovoltaic (PV) and other grid-tied renewable energy systems, all will require development of highefficiency inverters. In particular, new developments in the design of photovoltaic inverters are targeted at minimizing the cost-per-watt and increasing the maximum power harnessed from the solar system to deliver the best possible return on investment. Allegro™ MicroSystems LLC has developed a unique family of high performance integrated current sensor ICs designed to be used in Smart Grid inverter and motor control applications.

PV系统

化石燃料的成本上升,结合日益增长的低碳排放需求,引发了使用可再生资源的技术的激烈的研究和开发活动。yaboAPP亚博可再生能源有贡献全球最终消费的19%,在过去五年中的许多技术每年在每年增加两位数的速度[1]。特别是,风车和光伏(PV)太阳能技术一直在经历显着的发展,并网格连接的太阳能光伏技术在年速率大于60%[1]时增长最快[1]。

与太阳能生产相关的主要挑战是将PV面板产生的直流电流转换为电网的正弦AC电流。图1示出了PV系统的简单框图,并且由太阳能电池板阵列和逆变器以电网连接的配置组成,具有切换控制以及最大功率点跟踪(MPPT)。MPPT模块通常在每个PV串上用于较大的阵列,因为最大功率点可以根据太阳辐射的差异,从一个太阳能柱转移到另一个太阳能点。电流传感器对于跟踪这些直流电流电平,然后使用微控制器来调整系统的操作点,以提供从每个PV串可用的最大功率。这些电流测量的比较也可用于检测缺陷的PV串。用于住宅用途的大量低功耗PV系统也可以采用电流传感器来控制MPPT并提高变频器效率。MPPT和逆变器控制两者都需要精确的电流感测。

Figure 1. Photovoltaic system diagram
Figure 1. Photovoltaic system diagram

霍尔效应电流感应的革命

The features and benefits of these industry-leading Allegro current sensor ICs include:

  • 最高电流分辨率,最低噪声光谱密度霍尔传感器IC在市场中
  • 精确的工厂编程传感器IC增益和偏移量
  • 信号处理和包装设计创新使得能够大于120 kHz输出带宽和快速输出响应时间
  • 专有的小型足迹传感器IC封装,具有电流隔离
  • Reduced power loss: through-hole compliant and low-resistance integrated conductor packages

通过采用先进的BICMOS工艺技术和创新的封装技术,即使在高带宽下也可以提供具有增强的精度和分辨率的完全集成的解决方案。图2显示了Allegro Hall电流传感器线性IC的输出峰值与峰值噪声和带宽的演变。噪声水平已经看到10倍的减少,而带宽具有一倍多。

逆变器感官

逆变器包括三个主要部分:DC-DC转换器,可将来自太阳能电池板的电压放大到电网所需的高电压;将DC电流转换为网格的AC正弦形状的DC到AC逆变器;和各种电气控制部件控制系统并优化效率,并确保符合电源规定和安全标准的要求。

高效的DC-TO-AC逆变器产生交流信号,用于直接连接到AC电网。因此,信号必须符合公用事业系统要求。它必须与网格同步并具有低总谐波失真(THD)。这里需要电流传感器在控制回路中,以确保与电网正确连接。他们必须准确测量AC和直流电流,并具有高动态性能。非常快速的响应时间需要快速对网格中的任何变化进行反应,并在损坏发生之前关闭或断开系统。高输出带宽功能使系统能够测量高频率交流电流和谐波。

对于没有变压器或具有高频变压器的逆变器,低偏移温度漂移(高精度)传感器使得可以控制馈送到电网的AC电流中的DC分量。法规与国家对国家的不同情况不同,但一般来说它很小
数十万毫安的顺序。此外,短路保护和过载保护等故障功能使电流传感器易于检测这些条件并快速将它们报告给微控制器。

Figure 2. Noise, BW Improvement vs. Time
Figure 2. Noise, BW Improvement vs. Time

高级霍尔电流传感器IC解决方案

传统霍尔效应传感器的一个缺点,当在电流检测应用中使用时,在零安培输出电压和霍尔放大器对温度变化的敏感度和输出信号带宽和输出噪声中的敏感性的一般限制。亚博尊贵会员亚博棋牌游戏Allegro MicroSystems开发了一种创新,完全集成的电流传感器套件,非常适合逆变器应用,可大大提高基于霍尔电流传感器IC的偏移,灵敏度和带宽操作。亚博尊贵会员在每个传感器封装中,IC本身是最重要的组件,并包含一个精密霍尔效应元件,耦合到低偏移,高精度放大器。

BiCMOS过程允许精确的放大器设计n with digital circuitry for factory programming of the gain and offset over temperature. Both the Hall element and the amplifier are chopperstabilized for enhanced accuracy and offset drift performance. Allegro has developed proprietary chopper stabilization and filtering techniques that result in the industry leading, low-noise performance of the Hall IC output signal as shown in figure 2. The analog output response times of less than 4 μs allows sensing of higher frequency switching inverters. In applications that work at lower frequencies the output can be further filtered to lower the noise on the output and improve the resolution. The output resolution of Allegro Hall current sensors has been revolutionized by these improved amplifier and filtering technologies.

图3显示了一种用于霍尔效应电流传感器IC的独特有效,专利的包装技术,提供了小形状因子,尤其有用,在空间有限。要感测的电流通过包装左下角的四个销之间的导电铜路径和包装右下角的四个销之间。霍尔效应IC使用标准倒装芯片组装技术组装到包装中。效果三大优势:

  • 霍尔效应感测元件紧邻电流承载导体,从而最大化磁耦合和信噪比,从而提高了设备​​精度。
  • 霍尔效应IC不与集成导体接触,从而保持电压隔离并使PV逆变器的DC侧和DC-TO-DC转换器的DC侧需要高达500 VRM的工作电压。连接到大厅IC上的低压输入/输出焊盘上的焊料凸块使接触
    with the lead fingers shown in the upper portion of figure 3.
  • 由于霍尔效应电流传感器线性IC完全集成,因此AlleGRO允许工厂编程设备,以补偿零放大器和温度的灵敏度变化。


Figure 3. ACS710 current sensor IC in an SOIC16 package with block diagram
Figure 3. ACS710 current sensor IC in an SOIC16 package with block diagram

Figure 4. Allegro Integrated Current Sensor IC Package
Figure 4. Allegro Integrated Current Sensor IC Package
Figure 5. Allegro current sensor linear device in the gap of a ‘C’ core around a conductor
Figure 5. Allegro current sensor linear device in the gap
of a ‘C’ core around a conductor

The block diagram in figure 3 shows that advanced features can be integrated into the device to reduce overall bill of material costs; for example, an overcurrent fault output that responds in < 2 μs with a user-programmable trip point. The fast digital fault output can be used to protect IGBT devices in case of over-current conditions. The internal conductor resistance is only 1 mΩ and provides for low power loss, enabling the package to support up to 40 A of continuous current at 85°C ambient temperature. This device comes in with an analog output, and Allegro part numbers are available with different sensitivities for use in low power inverters.

Allegro CB封装电流传感器IC系列(图4)为用户提供了集成电流检测解决方案,提供了100μΩ的串联导体电阻,用于超低功耗。这些电流传感器IC设计用于感测50至200 A的电流,可用于高功率PV逆变器。

In the CB package configuration, a high-accuracy, high-bandwidth linear Hall IC is placed in the gap of a concentrating, ferromagnetic core that wraps around the primary conductor. These integrated sensors offer a working voltage of approximately 450 VRMS .

For applications that require sensing currents above 200 A, as in HEV inverters or high power PV systems, designers can use an Allegro family of current sensor linear Hall sensor ICs in the gap of a simple steel ‘C’ core concentrator as in figure 5. These sensors come with analog or a digital PWM output.

结论

亚博棋牌游戏Allegro Microsystems开发了一系列全集成的霍尔效应电流传感器IC,可提供与施加电流成比例的高精度输出电压信号。先进的IC和封装技术使得能够高于120 kHz的带宽改进,以及在整个工作温度范围内提高设备精度的低噪声放大器设计。专有的包装技术还提供了具有电流隔离和Allegro工厂编程的小型形状器件,用于稳定零安培和全尺度输出温度。这些进步允许设计工程师在新的应用中使用基于Hall效果的电流传感器IC,其中需要增加的能量效率或新的操作功能。亚博尊贵会员

References

[1] REN21可再生能源政策网络21世纪 - 2010年可再生能源,全球地位报告 - 第13页
[2] IMS Research – PV Inverters, Annual report 2010

本文最初在2011年10月出现在智能电网论坛上。